【我们这十年@坐标中国】云网融合织就算力高速,“算”出数字生活潮******
中新网北京10月11日电题:云网融合织就算力高速,“算”出数字生活潮
作者 左雨晴
从“要想富,先修路”到“想发展,投算力”,算力基础设施等“新基建”正在国内掀起“落地潮”。
我们为什么需要算力?现在算力速度有多快?它又给我们带来了什么?
算力改变生活
什么是算力?算力是指对数据的处理能力。
在生活中,手机、电脑、超级计算机等诸多硬件设备都离不开算力,可以说算力是数字经济的底层逻辑,数字经济的任何发展都建立在优化的算法和强大的计算速度上,这让算力成为关键的核心生产力。
近年来,随着5G、人工智能、物联网、区块链等领域的快速发展,算力已悄悄改变我们的生活和命运。
在机场高速路口,汽车以80公里时速,“无感”通过收费站,仅收费环节每天就能节约2.75小时,大大改善了市民的出行体验。
广州机场高速,汽车以80公里时速,“无感”通过收费站。 中国电信供图在生产线上,一款新车上线前需要经历上千次的碰撞测试,而超级算力能模拟出整个碰撞过程,300次的仿真碰撞试验,在一分钟内成功模拟完成。更长远来看,“智能汽车”是离人工智能最近的应用场景之一,若能更快普及,将再次重塑人们的出行生活方式。
在偏远山区,大量人工智能深度学习算法和算力支撑下的智能教育,让远程人工智能可以辅助教师“因材施教”,推动教育资源均衡化,帮助深山里的孩子实现“走出大山”的梦想。
据工信部数据,中国算力产业规模快速增长,近五年平均增速超过30%。截至2022年6月底,我国在用数据中心机架总规模超过590万标准机架,服务器规模约2000万台,算力总规模超过150EFlops(每秒15000京次浮点运算次数),排名全球第二。
在数字化时代,数据中心、智算中心等算力基础设施正成为加速数字经济发展和产业转型升级的主要动力。在算力需求日益复杂,应用场景不断涌现的当下,中国东部地区算力资源吃紧,西部算力赋闲,如何让用户更好地像用电一样使用算力服务?
云网融合织就算力“高速路网”
数字时代正在召唤一张高效率的“算力网”。
2012年,中国电信宣布启动天翼云计算战略,正式进军云计算领域,成为国内首家涉足云计算服务的运营商。
以“算”为中心,“网”为根基,算力网络可驱动数据的跨域流动、实现算力的跨域调配。而作为一个复杂的、融合创新的系统性工程,算力网络如何像水和电一样成为“一点接入、即取即用”的社会级服务,孵化灵活多样的商业应用,需要统一的科学规划与评估。
2022年2月,中国“东数西算”工程正式全面启动。8个国家算力枢纽节点,10个国家数据中心集群,将打通中国“数”动脉,把东部算力需求有序引导到西部的数据中心处理、计算、存储,为可再生能源丰富的西部开辟出一条发展新路,成为一条打通东西部经济社会发展的“数动脉”。
作为算力基础设施和骨干传输网络的建设者,电信运营商已经成为打造算力网络的主力军。覆盖全国千城万池的“云网融合”,不仅构建端到端的安全能力和绿色低碳的基础设施,也让实体经济和人们的生活乘“云”而上。
通过内蒙古、贵州两个服务全球的中央数据中心,京津冀、长三角、粤港澳、陕川渝四个重点区域节点,31个省份均有布局的数据中心,再加上广泛分布的边缘节点,中国电信形成了2+4+31+X的全国算力布局。
中国电信京津冀大数据产业园。 中国电信供图如今,中国电信已拥有700多个数据中心,48.7万架互联网数据中心机架,机架利用率达到72%,IDC资源在国内数量最多、分布最广,“一城一池”累计覆盖超过160个地市。
“计算+连接”的深度融合,组成了算力传输的“高速路网”。在这个“高速路网”中,中国电信的算力规模可达每秒310亿亿次浮点运算,这意味着每一秒都有海量的算力正在调度。
从中国电信贵州数据中心到北京大约2200公里,动车需要10个小时左右,而算力传输时延只需要不到20毫秒。算力与网络充分融合,正以难以想象的速度,从看不见的地方延伸到看得见的远方,为人们的生活提供普惠便捷的智能服务。
“算网大脑”让算力调度智能化
随着东部算力需求有序引导到西部,一个逐步完善的数网协同、数云协同、云边协同、绿色智能的多层次算力设施体系必将加快形成。在此过程中,“十四五”规划提出的“强化算力统筹智能调度”成为构建算力网络的重要工作。
“算力调度作为‘东数西算’的重要环节,就如同‘西气东输’的管道,‘西电东送’的高压线路。但算力调度在实施过程却又复杂很多,分布式的算力决定了算力是多样的,例如计算任务的大小、时延要求、成本等多个因素。”中国电信天翼云首席技术官广小明表示。
以算力为核心进行信息处理,以网络为核心进行信息交换,算力“高速路网”需要一颗独特的智能“大脑”。
2022年5月17日,在天翼云诞生的第十年,中国电信推出了天翼云4.0算力分发网络平台——“息壤”,使得调度千城万池的算力不再是梦。
中国电信天翼云数据中心。 中国电信供图。广小明介绍,无论业务对算力的需求是多少,“息壤”都能够规划出满足需求的算力和网络资源,以“随愿算网”的方式,对边缘云、中心云、第三方资源等全网算力进行统一管理和调度,实现业务性能和成本的最优。
“由算力调度引擎、算力资源管理平台、算力资源共同构成的‘息壤’就像一个算力传输的枢纽,在全国范围内,实现每分钟数万次、每天上千万次的算力统筹和调度,满足各种领域对算力的极致需求。”
把东部需要进行的机器学习、数据推理、智能计算等AI训练和大数据推理的工作放到西部,自动配置和调度相应算力;把东部对时延不敏感的、不活跃的、需存档的海量数据,例如医院影像数据、视频监控数据等,放在西部存储……通过“息壤”,“东数西训”、“东数西备”、“东算西也算”、“东部企业,西部上云”成为现实,云渲染、跨云调度、性能压测、混合云AI计算等多种应用场景,也都有着“息壤”的身影。
时代浪潮下,算力正加速筑牢数字经济的底座,成为经济社会发展迈向更远未来的基石。(完)
【世界说】美媒:美执法机构依赖技术导致错误抓捕 有色人种被误识可能性高于白人100倍****** 中国日报网1月4日电 据美联社3日报道,日前美国路易斯安那州执法部门因使用面部识别技术,导致一名乔治亚州男子被误认为是逃犯而被捕,律师表示,案件再次引起人们对数码工具使用中的种族差异的关注。 据《泰晤士—皮卡尤恩报》/《新奥尔良倡导者报》报道,28岁的黑人男子兰德尔·里德(Randall Reid)于2022年11月底在佐治亚州迪卡尔布县被捕入狱。他的律师汤米·卡洛杰罗(Tommy Calogero)说,执法部门错误地将里德与发生在杰斐逊教区和巴吞鲁日的钱包盗窃案联系起来。里德于11月25日被捕,12月1日被释放。他的被捕引起了人们对该技术新的关注,批评人士认为,这项技术导致有色人种的误认率高于白人。 “他们告诉我,我有一张杰斐逊教区的逮捕令。我说,‘杰斐逊教区是什么?’”里德说。“我从未去过路易斯安那州。然后他们告诉我这是偷窃罪。但我不仅没去过路易斯安那州,也没有偷东西。” 据《纽约时报》报道,法庭记录显示,巴吞鲁日警察局的一名探员根据杰斐逊教区警长办公室对里德的识别,得到逮捕令,指控里德是同一周另一起奢侈钱包盗窃案的三名嫌疑人之一。杰斐逊警长乔·洛平托(Joe Lopinto)办公室未对此案及该机构对面部识别的使用等相关问题作出回应。 里德的案件再次引起了人们对路易斯安那州和其他地方使用面部识别工具的关注。执法部门使用面部扫描和人工智能辅助面部识别软件在美国引起了激烈的争论,并与关于种族不平等的对话交织在一起。一些研究表明,该技术更有可能错误识别黑人和其他有色人种,而不是白人,从而导致错误逮捕。 皮尤研究中心2022年的一份报告发现,66%的美国成年人表示,他们认为面部识别技术用于监控黑人和西班牙裔社区的频率将远高于其他社区。另据华盛顿邮报此类报道,在2019年美国的一项联邦研究中被测试的几个算法的结果显示,与白人相比,误识别黑人或亚洲人面孔的可能性高达100倍。 一些人认为,面部识别技术应该只用于为警察提供线索,而不是作为唯一的证据,而且警察不应过分依赖其结果,也不应将其应用于所有低级别犯罪。还有批评人士认为,那些过分信任系统结果的官员——或者像研究人员在一些警察部门发现的证据那样,为了获得更好的结果而改变搜索图像,最终可能会把举证的责任推给无辜的人,他们可能不会被告知逮捕他们时使用了什么调查手段。 (编译:马芮 编辑:韩鹤) 中国网客户端 国家重点新闻网站,9语种权威发布 |